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Abstract

The nearest neighbor problem is the following� Given a set of n points P � fp�� � � � � png in

some metric space X� preprocess P so as to e�ciently answer queries which require �nding the

point in P closest to a query point q � X� We focus on the particularly interesting case of the

d�dimensional Euclidean space where X � �d under some lp norm� Despite decades of e	ort�

the current solutions are far from satisfactory
 in fact� for large d� in theory or in practice� they

provide little improvement over the brute�force algorithm which compares the query point to

each data point� Of late� there has been some interest in the approximate nearest neighbors

problem� which is� Find a point p � P that is an ��approximate nearest neighbor of the query

q in that for all p� � P � d�p� q� � �
 � ��d�p�� q��

We present two algorithmic results for the approximate version that signi�cantly improve the

known bounds� �a� preprocessing cost polynomial in n and d� and a truly sublinear query time


and� �b� query time polynomial in logn and d� and only a mildly exponential preprocessing cost
�O�n��O�
���d � Further� applying a classical geometric lemma on random projections �for which

we give a simpler proof�� we obtain the �rst known algorithm with polynomial preprocessing

and query time polynomial in d and logn� Unfortunately� for small �� the latter is a purely

theoretical result since the exponent depends on 
��� Experimental results indicate that our

�rst algorithm o	ers orders of magnitude improvement on running times over real data sets� Its

key ingredient is the notion of locality�sensitive hashing which may be of independent interest


here� we give applications to information retrieval� pattern recognition� dynamic closest�pairs�

and fast clustering algorithms�
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� Introduction

The nearest neighbor search �NNS� problem is� Given a set of n points P � fp�� � � � � png in a

metric space X with distance function d� preprocess P so as to e�ciently answer queries for �nding

the point in P closest to a query point q � X � We focus on the particularly interesting case of the

d�dimensional Euclidean space where X � �d under some lp norm� The low�dimensional case is

well�solved 	
��� so the main issue is that of dealing with the 
curse of dimensionality� 	���� The

problem was originally posed in the ����s by Minsky and Papert 	��� pp� 


�

��� and despite

decades of e�ort the current solutions are far from satisfactory� In fact� for large d� in theory or

in practice� they provide little improvement over a brute�force algorithm which compares a query

q to each p � P � The known algorithms are of two types� �a� low preprocessing cost but query

time linear in n and d� and� �b� query time sublinear in n and polynomial in d� but with severely

exponential preprocessing cost nd� This unfortunate situation carries over to average�case analysis�

and even to the ��approximate nearest neighbors ���NNS� problem� Find a point p � P that

is an ��approximate nearest neighbor of the query q� in that for all p� � P � d�p� q�� �� � ��d�p�� q��

We present two algorithms for the approximate version that signi�cantly improve the known

bounds� �a� preprocessing cost polynomial in n and d� and a truly sublinear query time� and� �b�

query time polynomial in log n and d� and only a mildly exponential preprocessing cost �O�n� �
O�����d� Further� by applying a classical geometric lemma on random projections �for which we

give a simpler proof�� we obtain the �rst known algorithm with polynomial preprocessing and query

time polynomial in d and logn� Unfortunately� for small �� this is a purely theoretical result as the

exponent depends on ���� Experimental results 	��� indicate that the �rst algorithm o�ers orders

of magnitude improvement on running times over real data sets� Its key ingredient is the notion of

locality�sensitive hashing which may be of independent interest� we give applications to information

retrieval� pattern recognition� dynamic closest�pairs� and fast clustering�

Motivation� The nearest neighbors problem is of major importance to a variety of applications�

usually involving similarity searching� Some examples are� data compression 	���� databases and

data mining 	��� ���� information retrieval 	��� 
�� ���� image and video databases 	
�� ��� ���

���� machine learning 	���� pattern recognition 	
�� 
��� and� statistics and data analysis 	

� ����

Typically� the features of the objects of interest �documents� images� etc� are represented as points

in �d and a distance metric is used to measure �dis�similarity of objects� The basic problem

then is to perform indexing or similarity searching for query objects� The number of features

�i�e�� the dimensionality� ranges anywhere from tens to thousands� For example� in multimedia

applications such as IBM�s QBIC �Query by Image Content�� the number of features could be several

hundreds 	
�� ���� In information retrieval for text documents� vector�space representations involve

several thousands of dimensions� and it is considered to be a dramatic improvement that dimension�

reduction techniques� such as LSI �latent semantic indexing� 	�� ��� 
��� principal components

analysis 	��� or the Karhunen�Lo�eve transform 	��� ���� can reduce the dimensionality to a mere

few hundreds�

Of late� there has been an increasing interest in avoiding the curse of dimensionality by resorting

to approximate nearest neighbor searching� Since the selection of features and the use of a distance

metric in the applications are rather heuristic and merely an attempt to make mathematically






precise what is after all an essentially aesthetic notion of similarity� it seems like an overkill to

insist on the absolute nearest neighbor� in fact� determining an ��approximate nearest neighbor for a

reasonable value of �� say a small constant� should su�ce for most practical purposes� Unfortunately�

even this relaxation of goals has not removed the curse of dimensionality� although the recent results

of Kleinberg 	��� gives some improvements�

Previous Work� Samet 	��� surveys a variety of data structures for nearest neighbors including

variants of k�d trees� R�trees� and structures based on space��lling curves� more recent results

are surveyed in 	���� While some perform well in 
�� dimensions� in high�dimensional spaces they

all exhibit poor behavior in the worst case and in typical cases as well �e�g�� see Arya� Mount�

and Narayan 	���� Dobkin and Lipton 	
�� were the �rst to provide an algorithm for nearest

neighbors in �d� with query time O�
d log n� and preprocessing� cost O�n�
d��

�� Clarkson 	���

reduced the preprocessing to O�ndd��e������� while increasing the query time to O�
O�d log d� logn��

Later results� e�g�� Agarwal and Matou sek 	��� Matou sek 	���� and Yao and Yao 	���� all su�er

from a query time that is exponential in d� Meiser 	�
� obtained query time O�d� log n� but after

O�nd��� preprocessing� The so�called 
vantage point� technique 	�
� ��� �
� ��� is a recently

popular heuristic� but we are not aware of any analysis for high�dimensional Euclidean spaces� In

general� even the average�case analysis of heuristics for points distributed over regions in �d gives

an exponential query time 	�� ��� ����

The situation is only slightly better for approximate nearest neighbors� Arya and Mount 	�� gave

an algorithm with query time O�����dO�logn� and preprocessing O�����dO�n�� The dependence

on � was later reduced by Clarkson 	��� and Chan 	��� to ���d������ Arya� Mount� Netanyahu�

Silverman� and Wu 	�� obtained optimal O�n� preprocessing cost� but with query time growing as

O�dd�� Bern 	�� and Chan 	��� considered error � polynomial in d and managed to avoid exponential

dependence in that case� Recently� Kleinberg 	��� gave an algorithm with O�n log d��d preprocessing

and query time polynomial in d� �� and log n� and another algorithm with preprocessing polynomial

in d� �� and n but with query time O�n� d log� n�� The latter improves the O�dn� time bound of

the brute�force algorithm�

For the Hamming space f�� �gd� Dolev� Harari� and Parnas 	
�� and Dolev� Harari� Linial� Nisan�

and Parnas 	
�� gave algorithms for retrieving all points within distance r of the query q� Unfor�

tunately� for arbitrary r� these algorithms are exponential either in query time or preprocessing�

Greene� Parnas� and Yao 	��� present a scheme which� for binary data chosen uniformly at random�

retrieves all points within distance r of q in time O�dnr�d�� using O�dn��r�d� preprocessing�

Very recently� Kushilevitz� Ostrovsky and Rabani 	��� obtained a result similar to Proposition �

below�

Overview of Results and Techniques� Our main results are algorithms� for ��NNS described

below��
�Throughout
 preprocessing cost refers to the space requirement� typically
 the preprocessing time is roughly the

same	
�Our algorithms are randomized and return an approximate nearest neighbor with constant probability	 To reduce

the error probability to �
 we can use several data structures in parallel and return the best result
 increasing

complexity by a factor O�log ��

�For the sake of clarity
 the �O notation is used to hide terms that are poly�logarithmic in n	

�



Proposition � For � � �� there is an algorithm for ��NNS in �d under the lp norm for p � 	�� 
�

which uses �O�n��������� � dn� preprocessing and requires �O�dn�������� query time�

Proposition � For � � � � �� there is an algorithm for ��NNS in �d under any lp norm which

uses �O�n�� O�����d preprocessing and requires �O�d� query time�

Proposition � For any � � �� there is an algorithm for ��NNS in �d under the lp norm for

p � 	�� 
� which uses �nd�O��� preprocessing and requires �O�d� query time�

We obtain these results by reducing ��NNS to a new problem� viz�� point location in equal balls�

This is achieved by means of a novel data structure called ring�cover trees� described in Section ��

Our technique can be viewed as a variant of parametric search 	���� in that they allow us to reduce

an optimization problem to its decision version� The main di�erence is that in our case in answering

a query we can only ask for a solution to a decision problem belonging to a prespeci�ed set� since

solving the decision problem �i�e�� point location in equal balls� requires data structures created

during preprocessing� We believe this technique will �nd further applications to problems where

parametric search has been helpful�

In Section �� we give two solutions to the point location problem� One is based on a method

akin to the Elias bucketing algorithm 	��� ! we decompose each ball into a bounded number of cells

and store them in a dictionary� This allows us to achieve �O�d� query time� while the preprocessing

is exponential in d� implying Proposition 
� For the second solution� we introduce the technique

of locality�sensitive hashing� The key idea is to use hash functions such that the probability of

collision is much higher for objects that are close to each other than for those that are far apart�

We prove that existence of such functions for any domain �not necessarily a metric space� implies

the existence of fast ��NNS algorithms for that domain� with preprocessing cost only linear in d

and sublinear in n� We then present two families of such functions � one for a Hamming space and

the other for a family of subsets of a set under the resemblance measure used by Broder et al 	���

to cluster web documents� The algorithm based on the �rst family is used to obtain a nearest�

neighbor algorithm for data sets from �d� by embedding the points from �d onto a Hamming cube in

a distance�preserving manner� The algorithm for the resemblance measure is shown to have several

applications to information retrieval and pattern recognition� We also give additional applications

of locality�sensitive hashing to dynamic closest�pair problem and fast clustering algorithms� All

our algorithms based on this method are easy to implement and have other advantages ! they

exploit sparsity of data and the running times are much lower in practice 	��� than predicted by

theoretical analysis� We expect these results will have a signi�cant practical impact�

An elegant technique for reducing complexity owing to dimensionality is to project the points

into a random subspace of lower dimension� e�g�� by projecting P onto a small collection of random

lines through the origin� Speci�cally� we could employ the result of Frankl and Maehara 	����

which improves upon the Johnson�Lindenstrauss Lemma 	�
�� showing that a projection of P onto

a subspace de�ned by roughly ���� ln n random lines preserves all inter�point distances to within

a relative error of �� with high probability� Applying this result to an algorithm with query time

O���d� we obtain an algorithm with query time n��
��
� Unfortunately� this would lead to a sublinear

query time only for large values of �� In Section A of the Appendix� we give a version of the random

projection result using a much simpler proof than that of Frankl and Maehara� We also consider

�



the extensions of the random projection approach to lp norms for p �� 
� Using random projections

and Proposition 
� we obtain the algorithm described in Proposition �� Unfortunately� the high

preprocessing cost �its exponent grows with ���� makes this algorithm impractical for small ��

� Preliminaries

We use ldp to denote the space �d under the lp norm� For any point v � �d� we denote by jj�vjjp the

lp norm of the vector �v� we omit the subscript when p � 
� Also� Hd � �f�� �gd� dH� will denote the
Hamming metric space of dimension d� Let M � �X� d� be any metric space� P � X � and p � X �

We will employ the following notation� d�p� P � � minq�P d�p� q�� and "�P � � maxp�q�P d�p� q� is

the diameter of P �

De	nition � The ball of radius r centered at p is de�ned as B�p� r� � fq � X j d�p� q� � rg�
The ring R�p� r�� r�� centered at p is de�ned as R�p� r�� r�� � B�p� r��� B�p� r�� � fq � X j r� �
d�p� q� � r�g�

Let V d
p �r� denote the volume of a ball of radius r in ldp� The following fact is standard 	��� page

����

Fact � Let #��� denote the gamma function� Then V d
p �r� �

�
#�� � ��p��d

#�� � n�p�
rd and V d

� �r� �


	d��

d#�d�
�
rd�

� Reduction to Point Location in Equal Balls

The key idea is to reduce the ��NNS to the following problems of point location in equal balls�

De	nition � �Point Location in Equal Balls �PLEB�� Given n radius�r balls centered at C �

fc�� � � � � cng in M � �X� d�� devise a data structure which for any query point q � X does the fol�

lowing� if there exists ci � C such that q � B�ci� r� then return ci� else return no�

De	nition � ���Point Location in Equal Balls ���PLEB�� Given n radius�r balls centered at

C � fc�� � � � � cng in M � �X� d�� devise a data structure which for any query point q � X does the

following�

	 if there exists ci � C with q � B�ci� r� then return yes and a point c�i such that q � B�c�i� ���

��r��

	 if q �� B�ci� �� � ��r� for all ci � C then return no�

	 if for the point ci closest to q we have r � d�q� ci� � ��� � ��r� then return either yes or no�

Observe that PLEB ���PLEB� can be reduced to NNS ���NNS�� with the same preprocessing

and query costs� as follows� it su�ces to �nd an exact ���approximate� nearest neighbor and then

�



compare its distance from q with r� The main point of this section is to show that there is a

reduction in reverse from ��NNS to ��PLEB� with only a small overhead in preprocessing and query

costs� This reduction relies on a data structure called a ring�cover tree� This structure exploits the

fact that for any point set P � we can either �nd a ring�separator or a cover� Either construct allows

us to decompose P into smaller sets S�� � � � � Sl such that for all i� jSij � cjP j for some c � �� andP
i jSij � bjP j for b � �� �� log� n� This decomposition has the property that while searching P it

is possible to quickly restrict the search to one of the sets Si�

There is a simpler but much weaker reduction from ��NN to ��PLEB� Let R be the ratio of

the smallest and the largest inter�point distances in P � For each l � f� � ��	� �� � ���� � � � � Rg�
generate a sequence of balls Bl � fBl

�� � � � � B
l
ng of radius l centered at p�� � � � � pn� Each sequence

Bl forms an instance of PLEB� Then� given query q� we �nd via binary search the minimal l

for which there exists an i such that q � Bl
i and return pi as an approximate nearest neighbor�

The overall reduction parameters are� query time overhead factor O�log logR� and space overhead

factor O�logR�� The simplicity of this reduction is very useful in practice� On the other hand�

the O�logR� space overhead is unacceptable when R is large� in general� R may be unbounded� In

the �nal version� we will show that by using a variation of this method� storage can be reduced to

O�n� logn�� which still does not give the desired O�����d �O�n� bound�

De	nition 
 A ring R�p� r�� r�� is an �
�� 
�� ���ring separator for P if jP 
 B�p� r��j � 
�jP j
and jP nB�p� r��j � 
�jP j� where r��r� � � � �� 
�� 
� � ��

De	nition � A set S � P is a ��� 
��cluster for P if for every p � S� jP 
B�p� �"�S��j � 
jP j�
where � � �� 
 � ��

De	nition � A sequence A�� � � � � Al of sets Ai � P is called a �b� c� d��cover for S � P � if there

exists an r � d"�A� for A � �iAi such that S � A and for i � �� � � � � l�

	 jP 
 ��p�AiB�p� r��j � bjAij�

	 jAij � cjP j�

where b � �� � � c � �� d � ��

Theorem � For any P � � � 
 � �� and � � �� one of the following two properties must hold�

�� P has an �
� 
� ���ring separator� or

	� P contains a � �
�� � 
��cluster of size at least ��� 

�jP j�

Proof Sketch
 First note that for 
 � ��
� property ��� must be false but then property �
� is

trivially true� In general� assume that ��� does not hold� Then� for any point p and radius r de�ne�

	 f�p �r� � jP � B�p� �r�j�

	 f	p �r� � jP 
 B�p� r�j�

�



Clearly� f�p ��� � n� f�p �
� � �� f	p ��� � �� and f	p �
� � n� Also� notice that f�p �r� is monoton�

ically decreasing and f	p �r� is monotonically increasing� It follows that there must exist a choice

of r �say rp� such that f�p �rp� � f	p �rp�� Since ��� does not hold� for any value of r we must have

min�f�p �r�� f	p�r�� � 
n� which implies that f�p �rp� � f	p �rp� � 
n�

Let q be a point such that rq is minimal� De�ne S � P 
 R�q� rq� �rq�� it follows that jSj �
��� 

�n� Also� notice that for any s� s� � S� d�s� s�� � 
�rq� implying that "�S� � 
�rq� Finally�

for any s � S� jP 
B�s� rq�j � jP 
B�s� rs�j � 
n�

Theorem � Let S be a ��� 
��cluster for P � Then for any b� there is an algorithm which produces

a sequence of sets A�� � � � � Ak � P constituting a �b� 
� �
����� logb n

��cover for S�

Proof Sketch


The algorithm below greedily computes a good cover for S�

Algorithm Cover� S � P 
 R�q� rq� �rq��
r� �
�S�

logb n
� j � ��

repeat

j � j � �� choose some pj � S� B�
j � fpjg�

i� ��

while jP 
 �q�Bi
j
B�q� r�j � bjBi

j j do
Bi��
j � P 
 �q�Bi

j
B�q� r��

i� i� �

endwhile�

Aj � Bi
j � S � S �Aj � P � P �Aj

until S � ��

k � j�

In order to prove the correctness of the algorithm� it su�ces to make the following four claims�

	 S � A � �jAj ! Follows from the termination condition of the outer loop�

	 for all j � f�� � � � � kg and any p � S� jP
�q�AjB�p� r�j � bjAj j!Follows from the termination

condition of the inner loop�

	 for all j � f�� � � � � kg� jAj j � 
jP j ! Clearly� for any j� the inner loop is repeated at most

logb n times� Hence� maxq�Aj d�pj� q� � r logb n � �"�S�� As S is a ��� 
��cluster� we have

that jB�pj � �"�S��
 P j � 
jP j� Hence� jAj j � 
jP j�
	 r � �
�S�

����� logb n
! Since "�A� � "�S� � r logb n � "�S� � �"�S� � �� � ��"�S��

Corollary � For any P � � � 
 � �� � � �� b � �� one of the following properties must hold�

�� P has an �
� 
� ���ring separator R�p� r� �r�� or

	� There is a �b� 
� d��cover for some S � P such that jSj � ��� 

�n and d � �
������ logb n

�

�



��� Constructing Ring�Cover Trees

The construction of a ring�cover tree is recursive� For any given P at the root� we use properties ���

and �
� in Corollary � to decompose P into some smaller sets S�� � � � � Sl� these sets are assigned to

the children of the node for P � Note the base case case is when P is su�ciently small and we omit

that in this abstract� We also store some additional information at the node for P which enables us

to restrict the nearest neighbor search to one of the children of P � by using distance computations or

point location queries� For simplicity� assume that we can invoke an exact PLEB �not ��PLEB�� the

construction can be easily modi�ed for approximate point location� There are two cases depending

on which of the two properties ��� and �
� holds� Let � � 
��� �
� �� b � �� �

log� n
� and 
 � ���� logn

� �

Case �� In this case� we will call P a ring node� We de�ne its children to be S� � P 
 B�p� �r�

and S� � P �B�p� r�� Also� we store the information about the ring separator R at the node

P �

Case �� Here� we call P a cover node� We de�ne Si � P 
 �p�AiB�p� r� and S	 � S � A� The

information stored at P is as follows� Let r	 � �� � ����"�A� and let ri � r	��� � ��i for

i � f�� � � � � kg� where k � log���
������� logb n

� � �� Notice that rk �
�
�A�

logb n�����
� r

��� � For each

ri� generate an instance of PLEB with balls B�p� ri� for p � A� all instances are stored at P �

Theorem � The ring�cover tree can be constructed in deterministic �O�n�� time�

Proof Sketch
 The construction proceeds as follows� On each level� we determine if a node is

a ring or cover node� then we compute the ring or the cover� As the number of levels is �O���� it

is su�cient to consider only the �rst �root� node P � which we construct as follows� Firstly� for

each p � P we construct a list Lp containing all other points q � P sorted in increasing order of

d�p� q�� This takes O�n� logn� time� Then� we apply the method from the proof of Theorem ��

More speci�cally� we compute the functions f�p and f	p for each p � P � Having the lists Lp it can

be easily implemented in O�n�� time� Then we try to �nd a ring� if one is found we are done� In

the opposite case we �nd a cluster and then apply the algorithm cover to �nd a cover� It can be

veri�ed that this algorithm runs in time �O�n� time assuming the lists Lp are given� The PLEB

generation adds only another �O��� factor� Thus the total required time is �O�n���

We now describe how to e�ciently search a ring�cover tree� It su�ces to show that for any node

P we can restrict the search to one of its children using a small number of tests� Let minq�p� p
��

denote the point out of p and p� that is closer to q� The search procedure is as follows� we omit the

obvious base case�

Procedure Search


�� if P is a ring node with an �
� 
� ���ring separator R�p� r� �r� then�

�a� if q � B�p� r�� � ����� then return Search�q� S���

�b� else compute p� � Search�q� S��� return minq�p� p
���


� if P is a cover node with a �b� c� d��cover A�� � � � � Al of radius r for S � P then�

�



�a� if q �� B�a� r	� then compute p � Search�q� P � A�� choose any a � A� and return

minq�p� a��

�b� else if q � B�a� r	� for some a � A but q �� B�a�� rk� for all a� � A then using binary

search on ris� �nd an ��NN p of q in A� compute p� � Search�q� P � A�� and return

minq�p� p
���

�c� else if q � B�a� rk� for some a � Ai then return Search�q� Si��

��� Analysis of Ring�Cover Trees

We begin the analysis of the ring�cover tree construction by establishing the validity of the search

procedure�

Lemma � Procedure Search�q� P � produces an ��nearest neighbor for q in P �

Proof Sketch
 Consider the two cases�

�� P is a ring node�

�a� Consider any s � P�S�� Then d�s� p� � d�s� q��d�q� p�� implying that d�s� q� � d�s� p��
d�q� p�� Since s �� S�� we know that d�s� p� � �r � 
�������r� while d�p� q�� r��������

Then� d�s� q� � �� � ����r � d�q� p��

�b� For any s � B�p� r�� d�q� p� � d�q� s�� d�s� p�� implying that d�q� s� � d�q� p�� d�s� p� �
d�q� p�� r� It follows that d�q�p�

d�q�s� � d�q�p�
d�q�p��r � � � r

d�q�p��r � � � ��


� P is a cover node�

�a� Similar to Case ��b��

�b� Obvious�

�c� For any p � P � Si� d�p� a� � r� Since q � B�a� rk�� we have d�q� a� � rk � r
��� � d�p�q�

��� �

The proofs of Lemmas 
 and � are omitted�

Lemma � The depth of a ring�cover tree is O�log����n� � O�log� n��

Lemma � Procedure Search requires O�log� n � log k� distance computations or PLEB queries�

Lemma 
 A ring�cover tree requires space at most O�knblog���� n���
���

��logn� � O�npolylogn�

not counting the additional non�data storage used by algorithms implementing PLEBs�

Proof Sketch
 Let S�n� be an upper bound on the space requirement for a ring�cover tree for

point�set P of size n� Then for a cover node�

S�n� � max
l

max
A� 			Al� Ai disjoint� jAij��n� jAj�������n

	
lX

i��

S�bjAij�� � S�n� jAj� � jAjbk

�



For a ring node�

S�n� � 
S

�
n



�� � 
��� 

��

�
� �

The bound follows by solving this recurrence�

Corollary � Given an algorithm for PLEB which uses f�n� space on an instance of size n where

f�n� is convex� a ring�cover tree for an n�point set P requires total space O�f�npolylogn���

Fact � For any PLEB instance �C� r� generated by a ring�cover tree�
"�C�

r
� O

�
� � �

�
logb n

�
�

� Point Location in Equal Balls

We present two techniques for solving the ��PLEB problem� The �rst is based on a method similar

to the Elias bucketing algorithm 	��� and works for any lp norm� establishing Proposition 
� The

second uses locality�sensitive hashing and applies directly only to Hamming spaces �this bears some

similarity to the indexing technique introduced by Greene� Parnas� and Yao 	��� and the algorithm

for all�pairs vector intersection of Karp� Waarts� and Zweig 	���� although the technical development

is very di�erent�� However� by exploiting Facts 
 and � �Appendix A�� the instances of ��PLEB

generated while solving ��NN for ld� can be reduced to ��PLEB in Hm� where m � d logb n �
max����� ��� Also� by Fact � �Appendix A�� we can reduce ldp to l

O�d�
� for any p � 	�� 
�� Hence�

locality�sensitive hashing can be used for any lp norm where p � 	�� 
�� establishing Proposition �� It

can also be used for the set resemblancemeasure used by Broder et al 	��� to cluster web documents�

We assume� without loss of generality� that all balls are of radius ��

��� The Bucketing Method

Assume for now that p � 
� Impose a uniform grid of spacing s � ��
p
d on �d� Clearly� the

distance between any two points belonging to one grid cuboid is at most �� By Fact 
� each side

of the smallest cuboid containing balls from C is of length at most O�
p
d logb nmax����� ��� times

the side�length of a grid cell� For each ball Bi� de�ne Bi to be the set of grid cells intersecting

Bi� Store all elements from �iBi in a hash table 	��� ���� together with the information about

the corresponding ball�s�� �We can use hashing since by the preceding discussion the universe is

of bounded size�� After preprocessing� to answer a query q it su�ces to compute the cell which

contains q and check if it is stored in the table�

We claim that for � � � � �� jBj � O�����d� To see this� observe that jBj is bounded by the

volume of a d�dimensional ball of radius r � 
��
p
d� which by Fact � is 
O�d�rd�dd�� � O�����d�

Hence� the total space required is O�n��O�����d� The query time is the time to compute the hash

function� We use hash functions of the form�

h��x�� � � � � xd�� � �a�x� � � � �� adxd mod P � mod M

where P is a prime� M is the hash table size� and a�� � � � � ad � Z�
P � This family gives a static

dictionary with O��� access time 	���� The hash functions can be evaluated using O�d� arithmetic

operations� For general lp norms� we modify s to ��d��p� The bound on jBj applies unchanged�

��



Theorem 
 For � � � � �� there is an algorithm for ��PLEB in ldp using O�n��O�����d prepro�

cessing and O��� evaluations of a hash function for each query�

��� Locality�Sensitive Hashing

We introduce the notion of locality�sensitive hashing and apply it to sublinear�time similarity search�

ing� The de�nition makes no assumptions about the object similarity measure� In fact� it is ap�

plicable to both similarity and dissimilarity measures� an example of the former is dot product�

while any distance metric is an instance of the latter� To unify notation� we de�ne a ball for a

similarity measure D as B�q� r� � fp � D�q� p� � rg� We also generalize the notion of ��PLEB to

�r�� r���PLEB where for any query point q we require the answer to be yes if P 
B�q� r�� �� � and

no otherwise�

De	nition � A family H � fh � S � Ug is called �r�� r�� p�� p���sensitive for D if for any q� p � S

	 if p � B�q� r�� then PrH	h�q� � h�p�� � p��

	 if p �� B�q� r�� then PrH	h�q� � h�p�� � p��

In order for a locality�sensitive family to be useful� it has to satisfy inequalities p� � p� and r� � r�
when D is a dissimilarity measure� or p� � p� and r� � r� when D is a similarity measure�

For k speci�ed later� de�ne a function family G � fg � S � Ukg such that g�p� � �h��p�� � � � � hk�p���

where hi � H� The algorithm is as follows� For an integer l we choose l functions g�� � � � � gl from

G independently and uniformly at random� During preprocessing� we store each p � P in the

bucket gj�p�� for j � �� � � � � l� Since the total number of buckets may be large� we retain only the

non�empty buckets by resorting to hashing 	��� ���� To process a query q� we search all buckets

g��q�� � � � � gl�q�� as it is possible �though unlikely� that the total number of points stored in those

bucket is large� we interrupt search after �nding �rst 
l points �including duplicates�� Let p�� � � � � pt
be the points encountered therein� For each pj � if pj � B�q� r�� then we return yes and pj � else we

return no�

The parameters k and l are chosen so as to ensure that with a constant probability the following

two properties hold�

�� if there exists p� � B�q� r�� then gj�p�� � gj�q� for some j � � � � � l� and


� the total number of collisions of q with points from P � B�q� r�� is less than 
l� i�e�

lX
j��

j�P � B�q� r��� 
 g��j �gj�q��j � 
l�

Observe that if ��� and �
� hold� then the algorithm is correct�

Theorem � Suppose there is a �r�� r�� p�� p���sensitive family H for D� Then there exists an

algorithm for �r�� r���PLEB under measure D which uses O�dn�n��
� space and O�n
� evaluations

of the hash function for each query� where � � ln ��p�
ln ��p�

�

��



Proof Sketch
 It su�ces to ensure that ��� holds with probability P� and �
� holds with probability

P� such that both P� and P� are strictly greater than half� Assume that p� � B�q� r��� the

proof is similar when p� �� B�q� r��� Set k � log��p� n� then the probability that g�p�� � g�q� for

p � P � B�q� r�� is at most pk� � �
n � Thus the expected number of elements from P � B�q� r��

colliding with q under �xed gj is at most �� the expected number of such collisions with any gj is

at most l� Thus by Markov inequality the probability that this number exceeds 
l is less than ��
�

therefore the probability that the property �
� holds is P� � ��
�

Consider now the probability of gj�p�� � gj�q�� Clearly� it is bounded from below by

pk� � p
log��p� n

� � n
�

log ��p�
log ��p� � n�
�

Thus the probability that such a gj exists is at least P� � �� ��� n�
�l� By setting l � n
 we get

P� � �� ��e � ��
� The theorem follows�

We apply Theorem � to two measures� the Hamming metric and set resemblance 	���� the latter

is a similarity measure de�ned for any pair of sets A and B as D�A�B� � jA�Bj
jA	Bj� For the �rst

measure� we apply a family of projections for fast hashing with AC	 operations 	��� For the second

measure� we use sketch functions used earlier 	��� for estimation of the resemblance between given

sets A and B�

Proposition 
 ����� Let S � Hd and D�p� q� be the Hamming metric for p� q � H� Then for any

r� � � �� the family H � fhi � hi��b�� � � � bd�� � bi� i � � � � �ng is
�
r� r��� ��� �� r

d � �� r�����
d

�
�

sensitive�

Corollary � For any � � �� there exists an algorithm for ��PLEB in Hd 
or� ldp for any p � 	�� 
��

using O�dn�n���������� space and O�n�������� hash function evaluations for each query� The hash

function can be evaluated using O�d� operations�

Proof Sketch
 We use Proposition � and Theorem �� First� we need to estimate the value of

� � ln ��p�
ln ��p�

� where p� � � � r
d and p� � � � r�����

d � Without loss of generality� we assume that

r � d
lnn � since we can increase dimensionality by adding a su�ciently long string of �s at the end

of each point� Observe that

� �
ln ��p�
ln ��p�

�
ln �

��r�d

ln �
�������r�d

�
ln��� r�d�

ln��� �� � ��r�d�

Multiplying both the numerator and the denominator by d
r we obtain that�

� �
d
r ln��� r�d�

d
r ln��� �� � ��r�d�

�
ln��� r�d�d�r

ln��� �� � ��r�d�d�r
�
U

L
�

In order to upper bound �� we need to bound U from below and L from above� note that both U

and L are negative� To this end we use the following inequalities 	����

��� �� � ��r�d�d�r � e������ and ��� r�d�d�r � e����� �

d�r
��

�




Therefore�

U

L
�

ln�e����� �
d�r��

ln e������

�
�� � ln��� �

d�r �

��� � ��

� ���� � �� �
ln��� �

d�r �

� � �
� ���� � �� � ln��� �� lnn�

where the last step uses the assumptions that � � � and r � d
lnn � We conclude that

n
 � n�������n� ln����� lnn� � n���������� �� lnn�� lnn � O�n���������

The hash function evaluation can be made faster than O�d� for sparse data� i�e�� when the

number of non�zero coordinates of a query point is small� It su�ces to sample the bits from the

non�zero entries of the vectors� a similar method works for the functions used to build a static

dictionary� Moreover� our experience is that the preprocessing space and query time are much

lower than the above bound indicates� In particular� we have implemented a variant of the above

data structure for the case when data is stored on disk 	���� For a data set of 
����� d�color

histograms for images �with d ranging up to ��� only ��� disk accesses were required in order to

achieve small average error�

Proposition � ������ Let S be the set of all subsets of X � f� � � �xg and let D be the set resem�

blance measure� Then� for � � r� � r� � �� the following hash family is �r�� r�� r�� r���sensitive�

H � fh� � h��A� � max
a�A

	�a�� 	 is a permutation of Xg�

Corollary 
 For � � �� r � �� there exists an algorithm for �r� �r��PLEB under set resemblance

measure D using O�dn � n��
� space and O�n
� evaluations of the hash function for each query�

where � � ln r
ln �r �

We now discuss further applications of the above corollary� For any pair of points p� q � Hd�

consider the similarity measureD�p� q� de�ned as the dot product p�q� The dot product is a common

measure used in information retrieval applications 	�
�� it is also of use in molecular clustering 	����

By using techniques by Indyk� Motwani� and Venkatasubramanian 	��� it can also be used for

solving the approximate largest common point set problem� which has many applications in image

retrieval and pattern recognition� By a simple substitution of parameters� we can prove that for

a set of binary vectors of approximately the same weight� PLEB under dot product measure �for

queries of a �xed weight� can be reduced to PLEB under set resemblance measure� The �xed weight

assumption can be easily satis�ed by splitting the data points into O�log d� groups of approximately

the same weight� and then making the same partition for weights of potential queries�

��



��� Further Applications of PLEB Algorithms

The PLEB procedures described above can also be used in cases where points are being inserted

and deleted over time� In the randomized indexing method� insertion can be performed by adding

the point to all indices� and deletion can be performed by deleting the point from all indices� In the

bucketing method� insertion and deletion can be performed by adding or deleting all elements of

B in the hash table� However� in order to apply these methods� we have to assume that the points

have integer coordinates with absolute value bounded by� say� M � Let n be the maximum number

of points present at any time�

Corollary � There is a data structure for ��PLEB in f� � � �Mgd which performs insertions� dele�

tions� and queries in time O�����dpoly�logM� logn� using storage O�����dn�

Corollary � There is a data structure for ��PLEB in f� � � �Mgd which performs insertions� dele�

tions� and queries in time �O�dn�������� using storage O�dn� n�����������

The latter corollary follows from the fact that in order to compute g�q� we do not need to keep

the unary representation of p explicitly� Rather than that� it is su�cient for each coordinate to

keep track of the breakpoint at which the sampled bits are changing values from � to �� this clearly

requires only constant memory words per coordinate�

By keeping several copies of PLEB as in the simple method described at the beginning of

Section �� we can answer approximate closest�pair queries� It is su�cient to check for every radius

whether any cell �in the bucketing method� or any bucket �in the randomized indexing method�

contains two di�erent points� the smallest radius having this property gives an approximation to

the closest�pair distance� The time bounds for all operations are as in the above corollaries� but

multiplied by a factor O�log log���M�� It is also easy to see that the bichromatic pair problem �in

which the points are colored and we consider only pairs of di�erent colors� or even multichromatic

pair problem �for more than two colors� can be solved withing the same time bounds�

Combining both techniques� we obtain a method for dynamic estimation of closest pair� Epp�

stein 	
�� showed recently that dynamic closest�pair problem has many application to hierarchical

agglomerative clustering� greedy matching and other problems� and provided a data structure mak�

ing �O�n� distance computations per update operation� Our scheme gives an approximate answer

in sublinear time� Moreover by an easy simulation of Kruskal�s MST algorithm using dynamic

multichromatic closest pair data structure� the Approximate Minimum Spanning Tree problem can

be solved in time bounded by the cost of approximate bichromatic closest pair times �O�n�� Thus

we obtain the �rst algorithm solving this problem in subquadratic time for any d�
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A The Dimension Reduction Technique

We �rst outline our proof for the random projections technique for dimension reduction� Combining
this with Proposition 
� we obtain the result given in Proposition ��

De	nition � LetM � �X� d� andM� � �X �� d�� be two metric spaces� The spaceM is said to have
a c�isometric embedding� or simply a c�embedding� in M� if there exists a map f �M�M�

such that
��� ��d�p� q� � d��f�p�� f�q��� �� � ��d�p� q�

for all p� q � X� We call c the distortion of the embedding� if c � �� we call the embedding
isometric�
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Frankl and Maehara 	��� gave the following improvement to the Johnson�Lindenstrauss Lemma 	�
�

on �� � ���embedding of any S � ld� in l
O�log jSj�
� �

Lemma � �Frankl�Maehara ����� For any � � � � �
�� any 
su�ciently large� set S of points in

�d� and k � d���� � 
������� ln jSje� �� there exists a map f � S � �k such that for all u� v � S�

��� ��jju� vjj� � jjf�u�� f�v�jj� � �� � ��jju� vjj��

The proof proceeds by showing that the square of the length of a projection of any unit vector
v on a random k�dimensional hyperplane is sharply concentrated around k

d � Below we prove an
analogous fact� However� thanks to the use of a di�erent distribution� we are able to give a much
simpler proof and also improve the constants� Note that the constants are important as they appear
in the exponent of the time bounds of the resulting algorithm described in Proposition ��

Lemma � Let u be a unit vector in �d� For any even positive integer k� let U�� � � � � Uk be random
vectors chosen independently from the d�dimensional Gaussian distribution
 Nd��� ��� For Xi �
u � Ui� de�ne W � W �u� � �X�� � � � � Xk� and L � L�u� � jjW jj�� Then� for any � � ��

�� E�L� � k�

	� Pr	L � �k� � O�k�� exp��k
� �� � �� � ln �����

�� Pr	L � k��� � O�k�� exp��k
���

�� � ��� ln �����

Proof Sketch
 By the spherical symmetry of Nd��� �� each Xi is distributed as N��� �� 	��� page
���� De�ne Yi � X�

�i�� � X�
�i� for i � �� � � � � k�
� Then� Yi follows the Exponential distribution

with parameter � � �
� �see 	��� page ����� Thus E�L� �

Pk��
i��E�Yi� � �k�
�� 
 � k� also one can

see that L follows the Gamma distribution with parameters 
 � �
� and v � k�
 �see 	��� page �����

Since this distribution is a dual of the Poisson distribution� we obtain that

Pr	L � �k� � Pr	P
���
�k � v � ���

where P�
t is a random variable following the Poisson distribution with parameter 
t� Clearly

Pr	P�
t � v � �� �

v��X
i�	

e��t
�
t�i

i�

and therefore

Pr	L � �k� �
v��X
i�	

e��v
��v�i

i�
� ve��v

��v�v

v�
� ve��v

��v�v

vv

ev
� v�e���e�v � ve�v������ln���

which implies the desired result since v � k�
�

Finally� we claim the following bound� for some large constant � � ��

Pr	L � k��� �
�X
i�v

e�v��
�v���i

i�
� e�v��

�X
i�v

�
ev

i�

�i
� e�v��

�
��ev��X

i�v

�
ev

i�

�i
�

�X
i��ev����

�
ev

i�

�i�	

�Each component is chosen independently from the standard normal distribution N��� 
�	
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The second sum is very small for � � � and we bound only the �rst one� As the sequence � evi� �
i is

decreasing for i � v��� we can bound the �rst sum by

�
�ev

�

�
e�v��

�
e

�

�v
� O�v�e�v��

������ln ����

Since v � k�
� we obtain the desired result�

B Auxiliary facts

Fact � �Johnson�Schechtman �
��� For any � � p � 
 and � � �� there exists a constant � � �

such that for all d � �� the space ldp has a �� � ���embedding in l�d� �

Fact 
 �Linial� London� and Rabinovich �
��� For any � � � and every n�point metric space
M � �X� d� induced by a set of n points in ld�� there exists m such that M has a ��� ���embedding
in Hm� If all points have coordinates from the set f� � � �Rg� then M can be embedded isometrically
in Hm for m � Rd�
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